COLFEED4Print

MTE 3D printing of catalytic membranes and supports for cleaning AOPs in water

Pablo Ortega Columbrans

Junior Research Assistant (PhD Candidate) / Production pablo.ortega@colfeed.com

WHO ARE WE?

INNOVATIVE SME Valid until Mar 8th 2026

COLFEED4Print

We are a CSIC technologybased firm, TBF-CSIC, founded in February 2020, with the aim of providing (solutions of) innovative products for 3D printing in markets with high technological impact

We manufacture filaments/ granules of **functional materials** for 3D printing by material thermal extrusion (MTE).

DESIGN ANYTHING P MAKE ANYWHERE P

DES GN ANVTHING MAKEANYTHING

Material Thermal Extrusion

Additive Manufacturing

Filament-based

Screw-based

✓ Advantages vs. other 3D Printing Technologies

- Economical and accessible
- Less materials restrictions
- Easy to change material
- Room conditions printing
- MultiPrinting and Printing of different final 3D parts
- Low know-how requirements for digital designs
- Expanded in the medical sector (hospital and clinical)

What makes us UNIQUE

Our patented technology allows us to obtain feedstock to print any material

Our Catalogue

CATALOGUE 2023

0

INNOVATIVE SME

Valid until Mar 8th 2026

Filaments based on Polylactic Acid with dispersed electro conductive particles

Our Catalogue

GOBERNO HINSTERIO DE ESTINAL DE CENCLA

Photo- and electroactive materials for catalytic and energy applications

- Photocatalytic TiO₂/ZnO
- Conductive Graphite/Graphene
- Reinforced/Conductive FC-composites

LIELFEEL

Graphe

mutacturies

Our Catalogue

200µm

1 mm

AM & Colloidal Materials: Inks for Filament Fabrication

Double Green H₂ Production

The Challenge of Flow Reactors Engineering, with immobilized photocatalysts,

fabricated through an Environmentally Friendly Technology

- Represents 1.7% of the world's annual energy consumption
- Only 1% is generated from green energy sources
- Most of it is obtained from natural gas and coal, emitting 830 million tons CO₂/year
- Alternative: membrane photoreactors (PMR) for water splitting ٠ under sunlight

Problem

- PMR configurations are not resolved yet X
- New materials are still under study X
- Photocatalyst dosage and light exposition is limited X
- Low surface to volume ratio of membranes X
- Limited performance X

Need

- Geometries and Porosities to assure the contact with fluids
- Configurations of self-standing membranes, able to favor \checkmark light exposure and fluid flux
- Testing bench for extremely efficient materials and compositions

COMSOL predictive model

COLFEED4Print: Feedstock & 3D printing of heterostructures in selfsupported membranes for <u>DOUBLE</u> green H₂ generation

We are the only company able to introduce large quantities of **nanoparticles** in printing feedstock, <u>maximizing</u> <u>photocatalytic activity or sintering 100% inorganic parts for</u> <u>full-solid-state based technologies</u> (PEM & SOEC).

By a zero-carbon footprint and low energy **production process**, integrated in the circular economy frame

COLFEED4Print: Feedstock & 3D printing of heterostructures in selfsupported membranes for <u>DOUBLE</u> green H₂ generation

We are the only company able to introduce large quantities of **nanoparticles** in printing feedstock, maximizing photocatalytic activity or sintering 100% inorganic parts for full-solid-state based technologies.

CAD-Designed porosities & configurations of components for **multiprinted structures** with different functional materials: photocathode/anode + collectors and/or heterojunctions for H_2 generation.

Membranes with designed geometries and

photocatalytic activity

FEco TiO₂ / FEco ZnO

By a zero-carbon footprint and low energy **production process**, integrated in the circular economy frame

COLFEED4Print: Feedstock & 3D printing of heterostructures in selfsupported membranes for <u>DOUBLE</u> green H₂ generation

We are the only company able to introduce large quantities of **nanoparticles** in printing feedstock, maximizing photocatalytic activity or sintering 100% inorganic parts for full-solid-state based technologies

CAD-Designed porosities & configurations of components for **multiprinted structures** with different functional materials: photocathode/anode + collectors and/or heterojunctions for H_2 generation

Small batches for testing **nanoengineered compositions** improved with synthesis particles that increase photocatalysis performance as well as electrical conductivity

By a zero-carbon footprint and low energy **production process**, integrated in the circular economy frame Membranes where photocatalysts joint adsorbents lead to excellent results FEco TiO₂ / FEco ZnO / FEco Graphene / FEco Al₂O₃ / FEco ZrO₂

AM & Colloidal Materials: Inks for Filament Fabrication

Material Extrusion: FFF of Photoactive composites

P. Ortega-Columbrans || ULTIMATE. Water smart industrial symbiosis

PLA

CO₂

Design of porous structures with high specific surface area and photocatalytic activity

PLA

MR A

MT A \rightarrow 60x50x10 mm

Sample	Dimensions (mm)	t _{100%} (h)	t _{50%} (h)	k (h ⁻¹⁾	Catalyst (g)	k (h⁻¹·g⁻¹)
A-01	20x9x20	-	-	4,05 10-2	0,16	2,46 10-1
A-02	20x 5 x40	12	3	6,35 10 ⁻²	0,19	3,23 10 ⁻¹
A-03	20x 9 x40	2	1	1,01 10 ⁰	0,38	2,62 10 ⁰
A-04	20x9x40	2	1	0,95 10 ⁰	0,32	2,96 10 ⁰

Kinetic limitation in the thickness of the membranes

Design and printing of porous co-catalytic heterostructures

Photoactives composites filaments

Catalytic Heterostructures Design

Design and printing of porous co-catalytic heterostructures

Porosity and microscopy of FFF printed membranes Co-catalytic structure C Adsorbent Catalytic heterostructure

B

Design and printing of porous co-catalytic heterostructures

Porosity and microscopy of FFF printed membranes

B Co-catalytic structure

GP/ Al, 0, 20 um 20 µm TiO, TiO, 1 mm 1 mm 10 µm 10 µm

Adsorbent Catalytic heterostructure

Reaction mechanism, photocatalytic activity and kinetics

P. Ortega-Columbrans || ULTIMATE. Water smart industrial symbiosis

Reaction mechanism, photocatalytic activity and kinetics

Degradations achieved according to time and reactor type

Reactor / Sample composition	Α	k (h⁻¹·g⁻¹)	В	k (h⁻¹·g⁻¹)	С	k (h ⁻¹ ·g ⁻¹)
Flow Reactor (2h)	10%	7,4·10 ⁻¹	40%	4.4·10 ⁻¹	20%	2.4·10 ⁻¹
Batch Reactor (2h)	10%	1.1·10 ⁻⁰	80%	1.3·10 ⁻⁰	90%	1.04.10-0
Flow Reactor (6h)	25%	3.2·10 ⁻¹	-	-	-	-
Batch Reactor (6h)	25%	7.6·10 ⁻²	100%	1.3·10 ⁻⁰	100%	1.0·10 ⁻⁰
Flow Reactor (100h + refill)	85%	1.5·10 ⁻²	-	-	-	-
Batch Reactor (72h)	-	_	100% (72h)	9.3·10 ⁻¹	100% (72h)	8.1·10 ⁻¹

Incident power (W)

Exposed area (m^2)

Irradiance

 (mJ/cm^2)

2,81E+07

2,50E+01

3,00E+03

2,70E+07

1,01E+07

Exposed area

3,6

100

100

100

100

(cm²)

Power (W)

150

0,5

0,5

0,5

150

Flow Reactor

Flow reactor \rightarrow irradiating with 0.5 W vs. 150W \rightarrow 100 cm² vs. 3.6 cm² \rightarrow lower irradiances

HRT (s)

600

5

600

5400000

6750

Irradiance=-

Flow rate

0,00E+00

1,08E+00

9,00E-03

1,00E-06

8,00E-04

 (m^3/h)

P. Ortega-Columbrans || ULTIMATE. Water smart industrial symbiosis

Batch Reactor

Batch reactor

Flow reactor

Highlights

- COLFEED's high-tech feedstock for MTE 3D printing of photocatalytically active membranes has been validated in the scalability and printing of custom geometries tested in a flow reactor at AQUALIA's pilot plant.
- From the design of the geometries and their optimization we can improve the catalytic activity without compromising too much the fluid dynamic problems that the tested membranes may cause.
- The prepared **co-catalytic structures** show **better degradation rates** in the degradation of the studied pollutants **than the catalytic heterostructures**.
- Therefore, we have achieved a geometry that gives good catalytic yields for the AQUALIA flow reactor and good stability results in the different media and tests.

Our Team

Dr. Juan A Escribano **CEO, Chemist, MBA** BD | Finance | Sales

Esther Miguélez Lab. Analysis & Quality Control Production Quality Control ŀ @CDTIoficia Funded by the European Unior

Dr. Hossein Besharatloo Material Sci. & Tech. **R&D NEOTEC** ->CDT @CDTIoficia unded by the European Union

ICV CSIC colloidal processing

Dr. Joaquín Yus Material Sci. & Tech. PM Sea Materials

ILLINOIS

▝ۥ▋╒╒ᢓ

Technological Spin-off from CSIC

PRINT YOUR FUTURE IN 3D

www.colfeed.com